This paper obtained the existence criterion of two classes of bivariate rational interpolation function on rectangular grids and their showing formulas. 得到了矩形网格上两类二元有理插值函数存在的判别准则及有理括值函数的具体表示形式,并给出了数值算例。
A bivariate rational interpolation based on function values and the properties 一种基于函数值的二元有理插值函数及其性质
The Study of a Family of the Barycentric Bivariate Rational Interpolation The weighted least squares collocation method of RBF local interpolation 一类重心型二元有理插值算法的研究径向基函数局部插值的加权最小二乘配点法
Geometric Characterization for Bivariate Interpolation and Plane Configurations of Interpolation Nodes 二元插值的几何特征与插值结点平面构形
On Properly Posed Set of Functionals for Multivariate and Bivariate Birkhoff Interpolation 关于多元插值和二元Birkhoff插值泛函组适定性问题的研究
The problem of bivariate Lagrange interpolation along an algebraic curve is studied deeply and the conclusion in the paper popularizes the main result in reference. 探讨沿代数曲线进行二元Lagrange插值时有关插值适定结点组的递归构造理论问题,所得结论推广了这一问题的以往结果。
A Class of Bivariate Rational Interpolation Problem over Rectangular Grids 矩形网格上一类二元有理插值问题
Show formula of bivariate contact interpolation over Rectangular Grids 矩形网格上二元切触插值的表现公式
Some Researches of Bivariate Hermite Interpolation 关于二元Hermite插值问题的某些研究
Bivariate Reproducing Kernel and the Best Hermite Interpolation Operators 二元再生核与最佳Hermite插值逼近算子
With shape functions of mean value interpolation and a bivariate Taylor expression, error estimation of mean value interpolation within polygonal elements is analyzed. 对多边形单元上平均值插值的误差进行分析,利用平均值插值形函数的性质和二元函数的Taylor展开式,证明平均值插值的误差估计不等式。
A-Kind of Bivariate Spline S_2~ 1(△_ ( mn)~ ( 2)) By Free Interpolation Condition 一类自由数据的二元样条S2~1(Δ(mn)~(2))插值
Convergence and Error Estimation of Bivariate Cardinal Interpolation on a Three-Direction Mesh 三方向网格上二元基插值的收敛性及误差估计
The Method of Constructing Bivariate Osculatory Interpolation Formula 构造二元切触插值公式的方法
A Differentiating Criterion of Bivariate Rational Interpolation Existence 二元有理插值存在性的一个判别准则
Introduce the generalized Vandermonde matrix, and based on it, set up a representative form and the existence criterion of bivariate osculatory rational interpolation. 介绍了广义Vandermonde矩阵的定义,利用广义Vandermonde矩阵,给出了二元切触有理插值的一种表现形式,并给出了二元切触有理插值的存在性证明。
A bivariate rational interpolation on function values 一种关于函数值的二元有理插值方法
A simple and efficient algorithm for eliminating hidden lines from perspective representations of single-valued functions of two variables and of bivariate interpolation and smooth surfaces fitting on a rectangular region is presented. 本文给出一个在矩形定义域上单值双变量函数和单值插值光顺曲面的计算机图象显示中消去隐藏线的算法。
Approximation by product of bivariate trigonometric interpolation polynomials 二元乘积型三角插值多项式的逼近
Two Classes of Bivariate Rational Interpolation Problem 两类二元有理插值问题
A Kind of Bivariate Continued Fraction-Type Interpolation Approximation 一种二元连分式型有理插值逼近
Linear Summability of Bivariate Trigonometric Interpolation Polynomials 关于二元三角插值多项式的线性求和问题
A Class of Bivariate Cubic Spline Interpolation on a Rectangular From Humanity to Society 矩形域上的一类三次样条插值从类到社会
Bivariate quartic periodic spline interpolation on a four direction mesh 关于双周期的二元四次样条插值
To generate them to piecewise algebraic curves is important for studying the piecewise algebraic curves and the bivariate spline interpolation problems. 将它们推广到分片代数曲线上也有重要的理论与应用意义。王仁宏等对于分片代数曲线的Bezout定理多了大量的研究工作。
Choosing the different weights one may obtain the different univariate or bivariate barycentric rational Hermite interpolation. The poles and the unattainable points of the barycentric rational Hermite interpolation may be avoided through doing a proper choice for the interpolation weights. 选取不同的插值权可以得到不同的一元(或二元)重心有理Hermite插值函数,通过适当地选取插值权,可以使重心有理Hermite插值没有极点以及不可达点。
Finally, the bivariate Barycentric rational Hermite interpolation based on the Lebesgue constant minimizing, and proved the effectiveness of the new method by numerical examples. 最后,本文还研究了基于Lebesgue常数最小的二元重心有理Hermite插值方法,并且通过数值例子证明新方法的有效性。
In this paper, based on Lebesgue constant minimizing barycentric rational interpolation, we studied the shape control of barycentric rational interpolation and bivariate barycentric rational interpolation. 本文在基于Lebesgue常数最小的重心有理插值的基础上进一步研究了保形重心有理插值和二元重心有理插值的问题。
In addition, we offer a method to solve the problem of unattainable points of the bivariate rational interpolation which may convert unattainable points into attainable points. 此外,对导致二元有理插值函数不存在的不可达点,本文给出了一种处理方法,使之由不可达点变成可达点。
In this paper, based on polynomial interpolation and barycentric rational interpolation, new bivariate blending rational interpolation are constructed and the error estimation is given. 本文基于多项式插值和重心有理插值给出了构造二元混合有理插值的新方法,基于一元重心有理插值构造了二元重心有理插值格式。